Новая технология для авиаматериалов позволит регулировать их конечные свойства
Российские ученые предложили технологию создания легкого и прочного композиционного материала на основе полимерной матрицы и углеродных волокон. Такой материал может заменить импортные аналоги, в том числе применяемые в авиастроении, для создания элементов силового набора и корпусных конструкций самолетов. Разработанный композит может быть легко переработан или утилизирован, что делает его экологичнее аналогов. Исследование опубликовано в журнале Polymers.
Углеродное волокно – уникальный материал, состоящий практически полностью из атомов углерода. Большая механическая прочность при малом весе, устойчивость к высоким температурам и отличная коррозионная стойкость обеспечили ему широкое применение таких высокотехнологичных отраслях как ракетостроение, авиация, строительство, медицина. Композитные материалы, армированные углеродным волокном, особенно востребованы в авиастроении. Изготовленные из них детали и конструкции позволяют снизить конечный вес самолета, а значит и потребление топлива, тем самым снижая стоимость эксплуатации воздушного судна и воздействие на окружающую среду. Однако большинство существующих на сегодняшний день композитов с углеродным волокном создаются на основе эпоксидной смолы и других неплавких, нерастворимых материалов, не подлежащих утилизации.
Ученые из Университета МИСИС создали новый композитный материал на основе суперконструкционных термопластичных полимеров и углеродного волокна, который эффективно сохраняет свои эксплуатационные свойства под воздействием агрессивной среды, такой как авиатопливо, и при этом легко поддается вторичной переработке.
В качестве армирующего материала исследователи использовали углеродное волокно российского производства. Для изготовления матрицы, вместо обычной в таких случаях эпоксидной смолы, впервые был применен порошок полиэфирсульфона. Это аморфный термопластичный полимер, устойчивый к воздействию высоких температур, пара и различных химикатов, а также обладающий превосходными механическими свойствами. Также немаловажно, что полиэфирсульфон поддается переработке и утилизации, в отличие от «эпоксидки».
Исследователи НИТУ МИСИС подобрали наилучшие условия получения композитного материала и определили, что оптимальное содержание углеродных волокон для авиакомпозитов на основе полиэфирсульфона составляет 60-70 процентов от общей массы конструкции.
Поверхность углеволокна была дополнительно модифицирована методом термического окисления, в результате чего на поверхности углеродных нитей образовался тонкий слой, содержащий большое количество кислородсодержащих функциональных групп, способствующий лучшему сцеплению углеволокна с полимерной матрицей. Для пропитки углеродной преформы, вместо традиционной пропитки расплавом полимера под высоким давлением, была использована растворная технологиям – порошок полиэфирсульфона сначала растворяли с помощью органического растворителя при комнатной температуре, после чего модифицированное углеродное волокно пропитывали полученным раствором. Далее опытные образцы высушивались при температуре 100 °C в течение четырех часов, в дальнейшем преформа помещалась в пресс-форму, где под давлением при температуре 350 °C в течение 30 минут окончательно формировались заготовки.
Использование модифицированного углеродного волокна позволило добиться стабильной структуры полученного композита и значительно улучшить его механические свойства и устойчивость к воздействию высоких температур. При этом, как отмечают авторы исследования, предложенная технология создания композитов на основе полиэфирсульфона и углеродных волокон позволяет регулировать свойства конечного материала в зависимости от степени наполнения полимерной матрицы волокнами.
«Говоря о возможностях применения материала, надо смотреть на конкретное изделие в котором они будут применяться, так как для каждого есть свои условия работы в конструкции, требования по прочности, максимально допустимым деформациям. Соответственно, меняется схема армирования, и степень наполнения (содержание волокон) тоже будет разной. Но, если говорить, например, о материалах для авиастроения, оптимальное содержание углеродных волокон будет скорее в интервале 60-70 процентов от общей массы конструкции», – поясняет один из авторов работы, старший научный сотрудник Центра композиционных материалов НИТУ МИСИС к.т.н. Андрей Степашкин.
Университет входит в топ-500 лучших вузов мира по версии QS WUR и в группу 151+ предметного рейтинга QS Materials Science, являясь лидером в области материаловедения среди российских вузов.
В университете действует более 40 научно-исследовательских лабораторий и инжиниринговых центров мирового уровня, в которых работают ведущие российские и зарубежные ученые. В основе образовательной модели вуза лежит интеграция образования и науки. НИТУ «МИСиС» сотрудничает более чем с 1600 крупнейшими компаниями России и мира. Благодаря комплексной программе профессиональной навигации средний балл ЕГЭ поступающих в университет вырос с 67,3 в 2012 году до 88,8 баллов в 2021 году.
В состав НИТУ «МИСиС» входит 10 институтов и 6 филиалов – четыре в России и два за рубежом. В университете около 22 000 обучающихся, 25% студентов – граждане из 84 стран мира.