В МАИ разработали уникальное решение по умной дефектоскопии

Московский авиационный институт, 29 октября 2024 года

В рамках проекта по промышленной дефектоскопии учёные МАИ разработали уникальную методику по созданию синтетических данных. Обученная на этих данных нейросеть позволяет снимать показания промышленных приборов при помощи умной камеры беспилотника.

Одной из важнейших задач на промышленных объектах является поддержание исправности оборудования и инфраструктуры. Обычно её выполняют квалифицированные специалисты, но обход огромных территорий занимает много времени, а в некоторых местах — и небезопасен для человека. Для выполнения этой работы в последние годы стали активно использовать беспилотники, оснащённые умными камерами, которые позволяют в автоматическом режиме контролировать объекты инфраструктуры и снимать показания с приборов — как электронных, так и стрелочных.

Такой проект для теплоэлектростанции реализовали в МАИ. В задачи промышленного беспилотника входят, в частности, дефектоскопия труб, связанных с топкой парового котла, а также определение показаний приборов машинного зала.

— Для машинного зрения распознавание показаний приборов сильно отличается от дефектоскопии труб. Главная сложность заключается в том, что дрон может с любой стороны подлететь к манометру, прибор может иметь разные ракурсы освещения, соответственно, получатся разные изображения. Поскольку реальных данных для обучения нейросети в нашем распоряжении было мало, мы сделали синтетический датасет, связанный с манометром. Мы изучили большой массив мировых научных публикаций и выяснили, что для стрелочных приборов, которые до сих пор используются повсеместно, не существует универсальной методики создания синтетических данных. Похожую задачу решали американские коллеги в Гарварде, но они смогли предложить решение только для неподвижной камеры, мы же сделали своё оригинальное решение для камеры БЛА в полёте, — рассказывает один из разработчиков, руководитель лаборатории искусственного интеллекта института № 8 «Компьютерные науки и прикладная математика» МАИ Вадим Кондаратцев.

Не менее сложной задачей было научить систему определять дефекты труб. Главная трудность здесь состояла в том, что дрон летает в полной темноте с зажжённым прожектором, а потому в зависимости от того, как ложится на трубу свет, меняется и изображение возможного дефекта. Таких сложных вариаций реальных изображений на практике получить невозможно, поэтому и здесь разработчики пошли по пути создания генератора синтетических данных.

— Технически это выглядит следующим образом. Разработчик берёт целевую модель обстановки — улицу, помещение, топку котла, трубу и т.д. — и под эту целевую модель заготавливает, во-первых, базовую сцену: в нашем случае, создаёт в специальной программе 3D-модель трубы. Потом придумывает алгоритм, как, имея базовую сцену, автоматически двигать камеру, строить разметку, наносить дефекты. Как ставить фильтры, которые будут искажать изображение таким образом, чтобы моделировать реальную съёмку. Как сделать так, чтобы данные, которые генерируются на основе этого движка, упаковывались и отправлялась в фреймворк обучения нейронной сети, — отмечает эксперт.

Разработка таких исходных 3D-моделей — довольно трудоёмкая работа, которая в среднем занимает несколько месяцев. Зато когда генератор готов, он способен за неделю создать несколько сотен тысяч изображений, которых вполне хватает для обучения нейросети.

— Конечно, обученный специалист распознаёт дефекты и считывает показания приборов в 100% случаев: для умной камеры это пока невозможный показатель. Но в данном случае выигрыш в скорости: дрон с умной камерой может облететь всю топку за пять минут, а человеку надо потратить несколько недель на строительство лесов и последующий осмотр, не говоря уже о рисках при проведении такого рода работ, — говорит Вадим Кондаратцев.

Материал подготовлен при поддержке Минобрнауки России.




Сообщения компаний:

В S7 Group заявили о важности госрегулирования стоимости аэропортовых услуг
АО "Авиакомпания "Сибирь"

Авиакомпания «РусЛайн» открыла продажу билетов на рейсы 2025 года
АО АК "РусЛайн"

Авиакомпания «Ямал» открывает регулярные рейсы в Новый Уренгой из Шереметьево
АО "Международный аэропорт Шереметьево"

Двигатели ОДК обеспечили доставку грузов к МКС
АО "ОДК"

Вопросы эффективного управления затратами аэропортов рассмотрят на форуме Развитие аэропортов – 2024 в Москве 27 ноября
Центр стратегических разработок в гражданской авиации (ЦСР ГА)

Генеральный директор аэропорта Красноярск – в числе номинантов премии «Человек года»
Международный аэропорт Красноярск

«Уральские авиалинии» увеличили зарплаты техническому персоналу на 35%
ОАО АК "Уральские авиалинии"

ГТЛК и Правительство Ярославской области договорились о сотрудничестве в сфере беспилотной авиации
АО "ГТЛК"

Авиакомпания «Ямал» запускает ежедневные рейсы из Нового Уренгоя в московский аэропорт Шереметьево
АО УК "Аэропорты Регионов"

Студенты МГТУ ГА защитили честь вуза на главной неделе транспортников России
МГТУ ГА

УК «Аэропорты Регионов» представила в рамках «Транспортной недели» свои инвестиционные проекты и новые технологии для отрасли
АО УК "Аэропорты Регионов"

Ростех будет развивать научно-производственную кооперацию с ведущими вузами
Госкорпорация Ростех

Авиакомпания Red Wings пополнила свой флот новым самолётом SSJ-100
АО "Ред Вингс"

Глава ГТЛК Евгений Дитрих рассказал Председателю Правительства Михаилу Мишустину о развитии рынка гражданских беспилотников и планах компании по лизингу спутников
АО "ГТЛК"

МАИ поделился с опорными вузами ОАК опытом реализации научных и образовательных проектов
Московский авиационный институт

Эмирейтс представляет новогоднюю коллекцию товаров в официальном магазине бренда
Авиакомпания Emirates

Начались испытания нового российского оборудования на летающей лаборатории Ту-214
ПАО "ОАК"

АКРА присвоило рейтинг АА-(RU) выпуску облигаций ГТЛК серии 002P-04
АО "ГТЛК"

ГТЛК заключила первый в России договор лизинга космических аппаратов с Группой компаний «СПУТНИКС»
АО "ГТЛК"

ГТЛК и Роскосмос намерены развивать льготный лизинг космических аппаратов
АО "ГТЛК"