В МАИ разработали уникальное решение по умной дефектоскопии

Московский авиационный институт, 29 октября 2024 года

В рамках проекта по промышленной дефектоскопии учёные МАИ разработали уникальную методику по созданию синтетических данных. Обученная на этих данных нейросеть позволяет снимать показания промышленных приборов при помощи умной камеры беспилотника.

Одной из важнейших задач на промышленных объектах является поддержание исправности оборудования и инфраструктуры. Обычно её выполняют квалифицированные специалисты, но обход огромных территорий занимает много времени, а в некоторых местах — и небезопасен для человека. Для выполнения этой работы в последние годы стали активно использовать беспилотники, оснащённые умными камерами, которые позволяют в автоматическом режиме контролировать объекты инфраструктуры и снимать показания с приборов — как электронных, так и стрелочных.

Такой проект для теплоэлектростанции реализовали в МАИ. В задачи промышленного беспилотника входят, в частности, дефектоскопия труб, связанных с топкой парового котла, а также определение показаний приборов машинного зала.

— Для машинного зрения распознавание показаний приборов сильно отличается от дефектоскопии труб. Главная сложность заключается в том, что дрон может с любой стороны подлететь к манометру, прибор может иметь разные ракурсы освещения, соответственно, получатся разные изображения. Поскольку реальных данных для обучения нейросети в нашем распоряжении было мало, мы сделали синтетический датасет, связанный с манометром. Мы изучили большой массив мировых научных публикаций и выяснили, что для стрелочных приборов, которые до сих пор используются повсеместно, не существует универсальной методики создания синтетических данных. Похожую задачу решали американские коллеги в Гарварде, но они смогли предложить решение только для неподвижной камеры, мы же сделали своё оригинальное решение для камеры БЛА в полёте, — рассказывает один из разработчиков, руководитель лаборатории искусственного интеллекта института № 8 «Компьютерные науки и прикладная математика» МАИ Вадим Кондаратцев.

Не менее сложной задачей было научить систему определять дефекты труб. Главная трудность здесь состояла в том, что дрон летает в полной темноте с зажжённым прожектором, а потому в зависимости от того, как ложится на трубу свет, меняется и изображение возможного дефекта. Таких сложных вариаций реальных изображений на практике получить невозможно, поэтому и здесь разработчики пошли по пути создания генератора синтетических данных.

— Технически это выглядит следующим образом. Разработчик берёт целевую модель обстановки — улицу, помещение, топку котла, трубу и т.д. — и под эту целевую модель заготавливает, во-первых, базовую сцену: в нашем случае, создаёт в специальной программе 3D-модель трубы. Потом придумывает алгоритм, как, имея базовую сцену, автоматически двигать камеру, строить разметку, наносить дефекты. Как ставить фильтры, которые будут искажать изображение таким образом, чтобы моделировать реальную съёмку. Как сделать так, чтобы данные, которые генерируются на основе этого движка, упаковывались и отправлялась в фреймворк обучения нейронной сети, — отмечает эксперт.

Разработка таких исходных 3D-моделей — довольно трудоёмкая работа, которая в среднем занимает несколько месяцев. Зато когда генератор готов, он способен за неделю создать несколько сотен тысяч изображений, которых вполне хватает для обучения нейросети.

— Конечно, обученный специалист распознаёт дефекты и считывает показания приборов в 100% случаев: для умной камеры это пока невозможный показатель. Но в данном случае выигрыш в скорости: дрон с умной камерой может облететь всю топку за пять минут, а человеку надо потратить несколько недель на строительство лесов и последующий осмотр, не говоря уже о рисках при проведении такого рода работ, — говорит Вадим Кондаратцев.

Материал подготовлен при поддержке Минобрнауки России.




Сообщения компаний:

S7 Group объявляет набор на собственную IT-кафедру в МФТИ
АО "Авиакомпания "Сибирь"

Аэрофлот увеличивает на лето частоту полётов в Калининград
ПАО "Аэрофлот"

Бизнес-зал «Сфера» в Московском аэропорту Домодедово открылся в новом формате
Московский аэропорт Домодедово

AZUR air возобновила прямые рейсы во Вьетнам из Владивостока
Авиакомпания AZUR air

Разработанная в МАИ нейросеть решит проблему посадки БЛА в труднодоступных районах
Московский авиационный институт

Студенты МГТУ ГА приняли участие в правовом семинаре
МГТУ ГА

«Вертолеты России» открыли новую «Фабрику процессов» в Татарстане
Холдинг "Вертолеты России"

В числе лучших работодателей России: «Газпром нефть» и ее дочерние предприятия задают новые стандарты корпоративной культуры
АО "Газпромнефть-Аэро"

Аэропорт Братск перешёл на летнее расписание
Аэропорт Братск

ЦАГИ – на школе-семинаре «Аэродинамика и динамика полёта летательных аппаратов»
ФАУ "ЦАГИ"

S7 Airlines запустила продажу снеков и напитков на борту
АО "Авиакомпания "Сибирь"

Из Уфы на Алтай прямым рейсом!
АО "Международный Аэропорт "Уфа"

Из аэропорта Красноярск прямым рейсом в Египет
Международный аэропорт Красноярск

Море вдохновения в аэровокзале Южно-Сахалинска: обновлена выставка «Художники Сахалина»
АО «Аэровокзал Южно-Сахалинск»

Добавим азиатских красок - летим во Вьетнам
АО "Международный аэропорт Владивосток"

Авиакомпания Smartavia и благотворительный фонд «Антон тут рядом» выпустят антистресс-подушку для пассажиров с аутизмом и тревожностью.
АО "Авиакомпания Смартавиа"

Минпромторг России наградил ветерана Казанского вертолетного завода
Холдинг "Вертолеты России"

Авиакомпания Smartavia приступила к работе по летнему расписанию
АО "Авиакомпания Смартавиа"

Международный аэропорт Самарканда перешел на весеннее-летнее расписание полетов
AIR MARAKANDA

Utair открывает рейсы в Ленкорань из Москвы
ПАО "Авиакомпания "ЮТэйр"